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Introduction

The three-body problem, came from the celestial mechanics, describes
the motion of an object under the gravitational force of two bodies.

Figure 1: Various solutions of three-body problem.*

Ihttps://www.wikiwand.com/en/articles/Three-body_problem
Dongho Lee October 14th, 2025 1/23


https://www.wikiwand.com/en/articles/Three-body_problem

Contents

Main interest : Periodic orbits of three-body problem.
Contents.
@ Hamiltonian dynamics

@ Periodic orbits and Bifurcation

@ Three-body Problem



Hamiltonian Dynamics



Classical Mechanics

Classical mechanics is governed by 2nd order ODE on R™ which is given
by Newton's second law,

F=ma < -VV(q) =4,
where ¢ € R" is the position and V' is the potential energy.
The mechanical energy is defined by

_ _ ldP?
H=K+V:=5-+V(9),

where K is the kinetic energy.

Law (Classical Energy Conservation)
H is conserved along the trajectory of q determined by force F' of the
form =NV where V =V (q).
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Hamiltonian Mechanics

Question 1. Can we re-formulate the equation of motion via the law of

energy conservation?

Consider H as a function H = H(q,p) where p € TyR", so

_pl?
H(q,p) = > T V(g).
Then we have
q=p= 8£
op’
OH
q

Now we have a 1st order ODE on T*R™.
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Hamiltonian Mechanics

Let H : T*R™ — R be a function, which will be called Hamiltonian.

Consider the vector field Xy on T*R",
0H 0 0H 0

X =
" ( ) Z dpi Oq;  Oq; Ip;’

Theorem (Energy Conservation)
Along the trajectory of Xy, H is conserved.

We call Xy the Hamiltonian vector field.

Now we can impose any function H as the total energy of the system,
and use the viewpoint of the classical mechanics.
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Symplectic Structure

Question 2. How can we make Xy from H?

We naturally have a differential 1-form from H,

H
dH = Z —dql - a—dpl

If we can change (dg,dp) (T*M) to (—=0p,0,) (T'M), we get Xpg.
The duality via a bilinear form w = dp A dgq works by

w(Xp,) = —dH(-),

since

w(Xp,0y,) =w((=0q,H) Op,,0q,) = —0p, H = —dH(9y,),
W(XH,api) =w ((apiH) 8(17:781?71) = *3p7~,H = *dH(api)-
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Symplectic Structure

For suitable bilinear form w, we must have

1. Non-degeneracy (kerw = 0) for duality.
2. Alternating property (w(X, X) = 0) for conservation of energy,

3. Closedness (dw = 0) for the conservation of w,
LXHW =S diXHw -+ iXHdw = —d(dH) + iXHdw = z'XHdw = (),

We call any such differential 2-form w a symplectic form.

A manifold W with a symplectic form w is called symplectic manifold.
The study of (W, w) is symplectic geometry / topology / dynamics.
Nice introductory texts : [Arn89], [CdSO01].
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Periodic orbits and Bifurcation



Toy Example : Function

L ALy

(a) t=-1 (b) t=-0.5
(c)t=0 dt=1

Figure 2: Graphs of fi(z) = z(z — 2)(2* + 1)




Conley-Zehnder Index

Main interest : Periodic orbits of a given Hamiltonian,

v :[0,7] = W such that 4(¢t) = Xg(v(t)), v(0) = ~(7).

A periodic orbit 7y is non-degenerate if there is no multiplicity.
Generically, every periodic orbit of Xz on H~!(c) is non-degenerate.
For non-degenerate 7, we define Conley-Zehnder index pcz(7) € Z.

This gives grading of Floer homology, which is a symplectic invariant.

=- The indices of all periodic orbits are topologically controlled.
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Bifurcation of Periodic Orbits

- Each point of the diagram
is a periodic orbit with
energy H = c.

increase ¢ - At each segment between
red points, orbits are
non-degenerate and the

indices do not change.

- At red points, the orbit

index changes B
degenerates and the index

degenerate

changes, and families of
orbits are born or vanish.
We call this bifurcation.

Figure 3: Bifurcation diagram
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Bifurcation of Periodic Orbits

Remark. Instead of changing the energy, we can perturb the
Hamiltonian and see the bifurcation behavior.

= Investigate a complicated system as a perturbation of simpler one.

Nice introductory texts : [Mil63], [Sma67], [AM78], [AD14]
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Three-body Problem




Kepler Problem

The Kepler problem describes the motion of an object under the
gravitational force of the other body.

lpl* _ 1

E(g,p) =~~~ Pk

In 17th century, Johannes Kepler established three laws from pure
observation...

Theorem (Kepler's Laws)

1. The Kepler orbits are conic sections with one focus at the origin.

If E < 0, the orbits are ellipses.
2. The areal velocity dArea = 20 is constant along the orbit.
3. The period is given by T = 21t/(—2E)3/2.
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Setting

Let two bodies E (earth) and M (moon) has mass ratio 1 — p : p.

B |p|2 " 1_,u
Blep) = ~ = mml 1= B

Assumptions

1. The third body is much lighter than M and E, so the motion of M
and F are not affected by the third body.
= The motions of M and E are governed by Kepler problem.

2. M and E are in circular motion.
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Circular Restricted Three-body Problem

The circular restricted three-body problem (CRTBP) is determined by
the same Hy(q,p) with

M(t) = (1 — p)(cost,—sint,0), FE(t) = —p(cost, —sint,0).
We can remove the time-dependency by using rotating frame, which gives

lp|? p 1—p
H(g,p) =2 _ - — paqt).
(¢:p) 2 Jq=M| Ja—E| + (P142 — p2q1)

This time-independent Hamiltonian also defines CRTBP.
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Circular Restricted Three-body Problem

Moon

Figure 4: lllustration of CRTBP.




Hill’s Region

We can rewrite the Hamiltonian as

po l-p  @G+g
lg—M| |q—E| 2

(m =@+ P2+ a) +6) -

N =

1,
= 518> + U(9)-

For the energy level ¢, we have H(q,p) =c= U(q) < c.
We call R, = {g € R? : U(q) < c} Hill's region.

Idea. For given energy level ¢, the position ¢ must stay in A..



Lagrange Points

PRONE SN A0 | [
I >

Figure 5: Hill's regions for increasing energies

The topology of the Hill's region changes through the critical values of H.
There are 5 critical points (red points), called Lagrange points.

At Lagrange points, dH = 0 = Xy = 0, which means that those are
equilibriums (stationary points).

e e S T — @ieloay W3, 207 17/23



Rotating Kepler Problem

Main interest : Periodic orbits of CRTBP.
CRTBP is still hard... = Use limit cases to get ideas.

Rotating Kepler problem (RKP) is the limit case = 0:

1
H(q,p) = —5 — m + (P1g2 — P2q1)-

Note. The trajectory can be decomposed into the Kepler trajectory and
the rotation along ¢s-axis.

= Kepler orbits invariant under the rotation are periodic orbits of RKP.
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Periodic Orbits of Rotating Kepler Problem

There are 4 non-degenerate periodic orbits of RKP for generic energy.

@ Planar circular orbits : retrograde orbit v, and direct orbit ~_.

@ Vertical collision orbits : north and south ., .

Theorem ([Lee25], ArXiv preprint)
Classification of periodic orbits of RKP and computation of indices.
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Periodic Orbits of Rotating Kepler Problem

q3

92
q1

Figure 6: Non-degenerate orbits of RKP.



Periodic Orbits of Circular Restricted Three-body Problem

@ We can consider CRTBP as a perturbation of RKP, and consider the
family of non-degenerate orbits.

@ 4 non-degenerate orbits of RKP also exist in CRTBP, which can be
shown numerically, but not analytically.

For example, retrograde orbit is important because it's expected to :

@ bifurcated from the retrograde orbit of RKP.
@ have the smallest period.

@ non-degenerate under the first critical energy.

Analytically, there is a candidate obtained by Birkhoff shooting method.
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Birkhoff Shooting Method
Theorem (Birkhoff)

For 0 < pn <1 and ¢ < H({y), there exists a solution of CRTBP
(q1,492) : [0, 7] = R x (—o00, 0] such that

Figure 7: Birkhoff Shooting Method (courtesy of Otto van Koert)
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Final Remarks

@ Many numerical results about CRTBP are known, but without the
aid of numerics, only little is known.

@ Some simpler limit cases of CRTBP (RKP, Euler problem, Hill's
lunar problem) can be studied.

@ Still, CRTBP presents many interesting questions, both
mathematically and practically.

Nice introductory texts : [FvK18], [Cel10]
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Thank you for your attention!
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